APPENDIX A
FIELD FORMS
(SEE ATTACHED CD)

Well Id	Date Measured	Time Measured	Casing Dia.(inch es)	Depth to LNAPL (ft- btoc)	Depth to Water (ft- btoc)	Depth to DNAPL (ft- btoc)	Measured Depth to Well Base (ft-btoc)	Key	Lat.	Long.	Comments
H-11	1/23/2008	7:58 AM	5		70.00		103.26	3210			Monument damaged
M-48									36.05275	-115.000978	Located - No Key Worked
MW-1	1/23/2008	8:10 AM	4		60.95		114.95	3210			
AA-MW-5	1/25/2008	10:30 AM	4		51.51		64.65	3210	36.036862	-115.014461	Parking lot west of Century Steel
H-13	1/23/2008	8:31 AM	10		38.23		75.35	3210			
EC-4	1/24/2008	1:38 PM	4		48.90		67.30	3210			
EC-3			4					0841	36.041573	-115.013256	Olin - Transect 2 - Asphalted Over?
AA-MW-13	1/24/2008	10:39 AM	4		53.03		99.04	3210			Sand material located within casing
B-1	1/25/2008	4:55 PM	4		41.45		59.40	3210	36.041815	-115.009943	Northeast of blue tank
TR-6			4								Tronox - Not Accessible
EC-10	2/8/2008	10:30 AM	2		44.11	54.04	59.37	0841			
EC-7	2/8/2008	10:15 AM	2		53.38	63.27	69.30	0841			
B-4	1/24/2008	2:10 PM	4		44.82		65.10	3210			
B-7	1/24/2008	10:02 AM	4		54.15		59.50	3210			
B-17	1/23/2008	9:52 AM	4		45.85		63.95	3210			Southern end of CAMU / strong odor
B-18	1/23/2008	9:40 AM	4		43.70		59.15	3210			Southern end of CAMU
AA-BW-12A	1/23/2008	9:28 AM	4		51.20		71.40	3210			Southern end of CAMU / strong odor
EC-1	1/24/2008	9:27 AM	4		55.49		71.05	3210			Northern edge of Olin property
EC-2	1/24/2008	9:18 AM	4		57.17		61.85	3210			Northern edge of Olin property
AA-MW-7	1/28/2008	10:42 AM	4		40.12		77.40	3210			Replaced Lock
PC-064	1/23/2008	8:49 AM	2		7.31		18.31	3210			Barret / Palm
PC-068	1/25/2008	3:30 PM	3		12.18		36.00	3210	36.08451	-114.996297	Well Vault Damaged - Sampling Not Possible
PC-067	1/23/2008	9:05 AM	2		11.64		33.75	3210			Rolly St.
MW-R	1/24/2008	2:50 PM	2		13.65		38.20	3210	36-062908	-115.010646	
PC-031	1/23/2008	9:17 AM	2		10.95		46.71	3210			Foster St.
PC-028	1/23/2008	10:50 AM	2		11.97		19.80	3210			Merlayne Dr.
MW-A-J	1/23/2008	10:55 AM	2		8.36		30.00	3210			Ward Dr.
MW-K1	1/23/2008	11:21 AM	2		9.60		19.55	3210			Moser Dr.
TWE-15	1/23/2008	11:06 AM	4		9.61		17.65	3210			Ward Dr.
PC-055	1/23/2008	11:15 AM	6		Dry		24.65	3210			

Well Id	Date Measured	Time Measured	Casing Dia.	Depth to Product (ft- btoc)	Depth to Water (ft- btoc)	Depth to Product (ft- btoc)	Measured Depth to Well Base (ft-btoc)	Key	Lat.	Long.	Comments
PC-010			2					3210	36.070944	-114.995471	Roldan Const Asphalted Over
MW-APX-5-7	1/23/2008		2		8.00		9.45	3210			Wiesner Way
MW-S	1/23/2008		2		24.78		42.37	3210			Waste Treatment Facility
MW-K5	1/23/2008		2		30.40		45.25	3210			Waste Treatment Facility
PC-002	1/23/2008		2		24.85		33.50	3210			Newly constructed treatment facility
HMW-13	1/23/2008	12:50 PM	2		19.05		26.40	3210			Well head and monument damaged
PC-056	1/25/2008	2:35 PM	2		13.74		54.75	3210	36.082794	-114.992714	
MW-U	1/23/2008	1:27 PM	2		17.18		36.17	3210			See foot note 1
PC-077	1/25/2008	12:53 PM	2		9.42		39.95	3210	36.086337	-114.998266	
PC-086	1/25/2008	1:45 PM	2		6.74		27.60	3210	36.085256	-114.992196	
CP-1	1/24/2008	8:55 AM	4		37.99		129.60	3210			
DPT-1	1/25/2008	4:50 PM	4		37.14		130.80	3210	36.041838	-115.009931	NE of blue tank, west of electric shop on 3rd st.
MC-MW-9	1/24/2008	10:25 AM	4		40.75		127.80	3210			South of SVE system
MC-MW-10	1/24/2008	9:45 AM	4		57.92		122.60	3210			North of large storage tanks
MC-MW-11	1/24/2008	10:10 AM	4		5 9 .85	126.25	127.65	3210			Strong odor
MC-MW-12	1/24/2008	2:16 PM	4		43.20		124.90	3210			
MW-8	1/24/2008	9:53 AM	4		Artesian			3210			See foot note 2
TR-1			4								Tronox - Not Accessible
TR-3			4								Tronox - Not Accessible
TR-5			4								Tronox - Not Accessible
TR-7			4								Tronox - Not Accessible
TR-9			4						36.037421	-115.003604	Tronax - Not Accessible
TR-11	1/25/2008	2:00 PM	4		Artesian			3210	36.054391	-115.01071	Guage read 4 PSI
TR-12	1/24/2008	3:06 PM	4		Artesian			3210			Gauge read 9 PSI
ARP-06A									36.072348		City Of Henderson Treatment Plant - Not Accessible
W											
1. Located wit	hin the fence	d area, con	tact Ted I	Moore from	American Pa	acific (AMP	AC) for access	. (702) 54	7-6652		
2. The well cap	p was vented	, causing th	e water to	seep out o	n to the soil						
										· · · · · · · · · · · · · · · · · · ·	

HARGIS	+ ASS	OCIATE	S. INC
			-,

OLIN-SMC/SYNGENTA-MONTROSE SITE-WIDE MONITORING PROGRAM - WATER LEVEL FIELD FORM

	Dona for USP 223.40
X	DANGE NO. 21 PRODUCE
	No Propos

QUARTER: _____YEAR:

	WELL IDENTIFIER	DATE	TIME	MEASURING POINT ELEVATION	DEPTH TO WATER (feet bmp)	TOTAL DEPTH OF WELL (feet)	WATER LEVEL ELEVATION (feet amsl)	DESCRIPTION OF MEASURING POINT	NON-	AQUEOUS PHASE L	IQUID	COMMENTS
		4-7	1202	(feet amsl)	5,	(icci)	(loct allisi)		Top (ft bmp)	Bottom (ft bmp)	Thickness (feet)	
may	AA-BW-08A	that!	913	1763.18	52.08	-60.661.	45	top of PVC casing				Wester Deducate Bushell purp warseled #03
Com	AA-BW-12A	4-1	1235	1778.54	52.30	-69 72	2,40	top of PVC casing			1	Bull with PULDIERS OBSIGNODIN ALGA
	AA-MW-05	4-3	936	1845.70	\$50.40	6463.6	3	top of PVC casing	Đ	0	0	Sources & Carro papaly
	AA-MW-07	4-7	918	1764.22	40.09	-74-77	40	top of PVC casing		_	-	
	AA-MW-13	4.3	1114	1809.64	34.76	65		top of PVC casing	4		Marine Sangara	COLORNO DETWEEN TANKS 6T-783 \$ 4T610, Source
-	AA-MW-14	4-7	1029	1811.31	39.46	-57-61.	30	top of PVC casing				Sours side of Rol before string POUDS
~	ARP-06B	4-4	822	1615.56	3201	4285	,	top of PVC casing	NM	NM	NM	South S. derof Rd before Dutiens PONDS
	B-01	4-3	1153	1807.14	40.33	5847		top of PVC casing	~	_		
ar	B-04	yn	1125	1800.89	44.64	64.5 64	.97	top of sounder port	NM	NM	NM	
res	B-07	4-7	855	1800.97	54.28	59.5 5	and the second s	top of PVC casing	NM	-NM	-NM	
m)	CP-01	4-7	1041	1827.62	37.55	129 5	3	top of PVC casing		~	~	GERTED NORF MENTROSE 1,5C/S.
	DPT-01	4-3	1149	1807.57	35.35	129,80		top of PVC casing				
- 1	EC-01	4-7	912	1771.11	55.50	20-71	05	top of PVC casing	-		_	
	EC-02	409	907	1771.43	57.30	-70-61		top of PVC casing	_	_	-	
- 1	EC-03	4-3	1015	1803.93	43.02	68,20		top of PVC casing	NM	NM	NM	
- 1	EC-04	4-3	1032	1811.48	47.79	66:30		top of PVC casing	NM	NM	NM	
*qr	EC-06	4-7	936	1805.26	38.59	70-72	.55	top of PVC casing	NM	NM	NM .	
- 1	EC-07	4207	940	1797.97	54.40	74 70.	So	top of PVC casing				
-	EC-09	4-7	958	1793.87	50.02	-65 6Z		top of PVC casing				
	EC-10	4,7	952	1792.08	45.63	60 60		top of PVC casing				
	H-11	4-3	953	1868.47	68.94	103 .21		top of sounder port	Ø	70	Ø	MONUNEUT DESAURED, 12-4 O.K.
- 1	H-13	42	737	1821.40	38.00	-80 75	7.33	top of steel casing		-		Soft Borrom
- 1	HMW-13	4-4	0850	1591.97	*	96		top of casing	NM	NM	NM	MONUMENT DRAWINGED, 12TU O.K. SOFF BOTTOM WILLIAMS STEVER WELLCASING (TOP) Bloksoff
- 1	M-048	4-4	0751	1720.78	17.48	-30.4 31.	an .	top of PVC casing	NM	NM	NM	
w	MCF-BW-11A	407	1242	1776.18 49		473-12	11.0 75.62	top of PVC casing	-	_	-	Lourses Monore For Survit peopolewolf
1	MC-MW-09	4-3	1015	1814.98	38.72	123.5 7	Change of the section	top of 4-inch steel casing				
	MC-MW-10	4.7	849	1803.91	58.00	- 118.5 /2		top of 4-inch steel casing				
ŀ	MC-MW-11	u-3	1214	1804.50	58,84		105 1276	top of 4-inch steel casing	126.35	1276	+1.25	STRONG ODDR
2	MC-MW-12	47	1115	1800.04		3.45123.5		Top of 4-inch steel casing	126-35	1276	11.25	Silvey
Gno		M-3	227	1851.18	60.70	114,72	1000	top of PVC casing	NMP 6	WW- 4	NM 6	NEEDS LOCK
19	MW-08	4.7	0851		ARTESIAN	300		top of 4-inch steel casing	NM	NM	NM	Go ventury through loop and onto grano
	MW-A-J	4.3	14.34	1649.64	828	300 30.6 29,	අ වි	top of PVC casing	NM	NM	NM	The state of the s
	MW-APX-5-7	4-4	1043	1613.76	7.81	9.51		top of casing	NM	NM	NM	NEODS Z' Capledon
ŀ	MW-K1	4-3	M39	1633.98	9.57	23.5		top of PVC casing	NM	NM	NM	1

Revised water level form Site-Wide 04/01/08

Mc. mw 12 121.95

Page 1 of 2

Hmw-13

17.4 TOWN + 2.89

10 26.7 FOM BROKEN

NO MONUMENT, WELL CONSTROND

OLIN-SMC/SYNGENTA-MONTROSE SITE-WIDE MONITORING PROGRAM - WATER LEVEL FIELD FORM

QUARTER:	
YEAR:	

WELL IDENTIFIER	DATE	TIME	MEASURING POINT ELEVATION	DEPTH TO WATER (feet bmp)	TOTAL DEPTH OF WELL (feet)	WATER LEVEL ELEVATION (feet amsl)	DESCRIPTION OF MEASURING POINT	NON-	AQUEOUS PHASE L	IQUID	COMMENTS
			(feet amsl)	29.49	45.4	(reet amor)		Top (ft bmp)	Bottom (ft bmp)	Thickness (feet)	MBD 2 "Cop Plug, Morentons
MW-K5	4-4	854	1598.81	27.8m	- 10.5.7 9	27	top of PVC casing	NM	NM	NM	Flot record Brown of Just les not No Co
MW-R	4-4	1110	1667.90	13:5%	38, 20		top of PVC casing	NM	NM	NM	
MW-S	4-4	832	1609.02	22.50	45 42	3 50	top of PVC casing	NM	NM	NM	nhas Lock
MW-U	4-4	1029	1590.96	15.50	-43-36	65	top of PVC casing	NM	NM	NM	Commerces The MODRES W/ Anger
PC-002	4-4	915	1597.07	23.44	34-7-57		top of PVC casing	NM	NM	NM	NEEDS Lock
PC-028	4-3	1427	1650.85	12.05	403: 79		top of PVC casing	NM	NM	NM	
PC-031	4.3	1419	1657.86	10.81	40.5.70		top of PVC casing	NM	. NM	NM	
PC-055	4-3	1480	1617.19	Den	∞ 54.9° ZL	.65	top of PVC casing	NM	NM	NM	CARRIED MW-12 Thorsman ?
PC-056	4.4	43C	1568.25	11.63	. 8 5~ 5 3		top of PVC casing	NM	NM	NM	Fleishbusent
PC-064	4-3	1409	1675.29	7:45	(84925		top of PVC casing	NM	NM	NM	
PC-067	4.3	1414	1973.82	11.70	33.80		top of PVC casing	NM	NM	NM	
PC-077	4-4	1005	1566.90	7.31	-40- <i>39.</i>	78	top of PVC casing	NM	NM	NM	
PC-086	4-4	949	1553.85		28		top of PVC casing	NM	NM	NM	DOSTHY WEST OF BOX 120, Flash AMOUNT, Key aidnow
TR-01			1752.18		312		top of casing	NM	NM	NM	
TR-03			1772.84		250		top of casing	NM	NM	NM	
TR-05			1800.27		251		top of casing	NM	NM	NM	
TR-06			1800.36		80		top of casing				
TR-07			1829.03		290		top of casing	NM	NM	NM	
TR-09			1854.29		250		top of casing	NM	NM	NM	
TR-11			1717.12		230		top of casing	NM	NM	NM	
TR-12	***************************************		1695.84		292		top of casing	NM	NM	NM	
TWE-15	4-3	1445	1633.40	9.51	1765		top of casing	NM	NM	NM	

NOTES:

bmp = Below measuring point amsl = Above mean sea level

NM = Not measured

`

MONITORING WELL LOW-FLOW PURGE/SAMPLING FORM

Page <u>\lambda</u> of \lambda						PROJEC			G WELL SAMF			
Well ID: Date: Sample ID: Time: Analyses: QA/QC -	1455 Sem Ac Dup ID: Rinsate ID: MS/MSD ID	08 1 19201 SUITE N)A N)A		Screened Interval Pump Intake Dep Ave. Flow Rate (Purging/Samplin PID Reading at 7 Water Level Inst Water Quality M	pth (ft): gpm/Lpm) ng Device: FOC: trument:	282- 295' Grund NV NV KELV	65 3	Well Diameter (in) Static Water Level (ft): Fotal Well Depth (ft): Water Column Length (ft): Minimum Purge Volume: Well Secure - yes/no		315.54 NO	ACHISION 315.55 NO ANY KICK	
77	Volume Purged	Flow Rate	Water Level (feet - TOC)	Specific Conductance (pH	Temp	DO (mg/L)		Turbidity (NTU)	Salinity %	TDS	
Time	(gal/L)	(gpm/Lpm)	± 0.1 ft	5%	± 0.1	± 1°C	±10%	±10%	±10% or <10 NTU	70		
1435	Pump	Start 500 we	Δ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7,77	29.23	9.29	-32	Ø	0.1	0.8	
1438	3.5	500ml	ACTESIAN	1.27	7.79	27.67	8.80	-41	Ø	<i>⊙</i> , ₁	0,8	
1441	5,0	500ml		1.27	7.74	27-86	·	4	3.4	©; ;	0,8	
14 45	7.0	500ml		1,23	7,69	27,92	8.62	17	2.9	6.1	0,8	
1455	Commo			1100	-,,,,,	1 . 1 . 1			, ,	- ,	0,0	
1.123	-0.0000	3)-147 114										
1503	Samphi	a Camplere										
		7										
	-							,				
				Final Fig.	ld Parameter	Measureme	nts					
		1	<u> </u>		1			<u> </u>				
Comments:												

MONITORING WELL LOW-FLOW PURGE/SAMPLING FORM

Page	o	1

MONITORING WELL SAMPLING LOG

			PROJECT:	Semi-Annual Suites	sitewide Sampling
Well ID:	TR-3	Screened Interval (ft):	<u> </u>	Well Diameter (in)	4"
Date:	4128108	Pump Intake Depth (ft):	235	Static Water Level (ft):	Artisian
Sample ID:	TR-3	Ave. Flow Rate (gpm/Lpm)		Total Well Depth (ft):	2501
Time:	1035	Purging/Sampling Device:	Grundfos	Water Column Length (ft):	350'
Analyses:	Semi-Annual Suite	PID Reading at TOC:	NIA	Minimum Purge Volume:	
QA/QC -	Dup ID: N\A	Water Level Instrument:	KECK	Well Secure - yes/no	No.
	Rinsate ID: N/3	Water Quality Meter(s):	Horina U-27	Samplers Name (Print):	And Kirk L. Cobos
	MS/MSD ID: $N \setminus \Delta$				

Time	Volume Purged (gal/L)	Flow Rate	Water Level (feet - TOC) ± 0.1 ft	Specific Conductance (Molum) 5%	pH ± 0.1	Temp ± 1°C	DO (mg/L) ±10%	ORP (mV) ±10%	Turbidity (NTU)	Salinity %	TDS
1017	PUMP	57014						9			
1017	aL	500 ml	******************	1.47	7.85	25.85	9.02	7	190	٥.١	0.9
1020	3.5	\$ <i>0</i> 0		129	7.47	27.75	4.78	-87	39.1	A.I	0.8
1024	5.2	500		1.27	7.48	29.90	3.23	-98	30.7	0.1	0.8
1028	6.8	500		1.29	7.53	27.96	2.47	~ 8Z	8:4	0.1	0.8
1032	8.5	500		i.28	7.57	27,93	2.48	-13	2.3	0.1	0.8
1034	9.7	500	and the state of t	1.26	7.5%	28.70	2.48	-67	í, 9	<u>0.1</u>	0.8
1035	5+0/+00	2 Sampling									
		, ,									
1119	Samplin	a + decon.	ng of equip	ment is to	~p)e+2						
	·	-3	3 0		•						
							,				
				Final Fiel	d Parameter I	deasureme	nis				
											}

Comments:

Page	of	3

Project: Sen: - Annual

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID		Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter:	20-80 Portable bladder N/A Keck 562 Horiba U-ZZ	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting:	41.95 DO. AK.
Analysis:	Sani-Annual Svife	Water Quality Meter Serial #:	7007046	PSI SO CPM	4 ID: 103
		WQM Calibrated Date & Time:	4/25/08 /7:55	Low-Flow or Net Purge:	Low-flow

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	c/1
8:01	Started	Dumo							- 2070		g/L
8'06	Stopped	ours	no our	ip attac	hed to	hose					
8:11	Starteday	0				Tiesc					
8:14	14	250	38.18	30.9	6.17	23.99	037	107	136.0	1.9	19
8:17	24	400	38.18	30.9	6-09	24-01	05-0	106	44.8	1-9	19
8:20	34	400	38.18	30.8	593	24-05	0.00	1 1	67.3	1.9	
8:23	41	400	38.18	30.1	5.73	24.06	0.00	107	54.8	1.9	19
8:26	52	400	38.18	30.9	5.65	24-00	0-00	108	60.8	1-9	<u> </u>
8:20	STarted	Sampling					0-00	700	100.0	Let	18
8:55	Samplin		ete			***************************************					
***************************************		/									

Comments: Well has a	dedicated pump we thought no	a ama attall	1
we are cree at ter	no water coming up after o	us el al and	10 roje
Tubing in well) (ac starks pury.	
/			

Page Z of 2	his an		Monit	oring We	l Low-F	Flow Pur	ge/Samp	ling For	m	Projec	ct: <u>Semi-Annua</u>	1
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	Screened Interval (ft) Le: 4-25-08 Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter: WQM Calibrated Date & Time:					T00709	bladdur /A	Water C Minimur Sampler	artesian 251' 1516 ml D.O A-K ID: Low Flow			
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	- /:	
9:22	Started	pinep -	90051	COMZ	ID >	O moved		-			g/L	
9:25	unable te	fake rea	-	1.95	7.25	21.71	12.20	051 cpm	2 ID		A	
9:28	horiba no		-	2.14	7.39	21.82	6.20	35	3.5	0-1	1.3	
9:31	£ C	- 11		2.07	7.36	21.91	5.44	37		0-1	1.4	
9:34	Water Just	dripping out	Turned presun		7.52	21.98	4.89	34	3.6	0.1	1.4	
9:37	(<	ſţ		2.16	7.34	21.97	4.88	35	1.5	0.1	1.4	
9:40		,		7.14	7.38	21.97	4.99	36	2.3	0.1	1.4	
9:30	1.0 L	40ml		1.41	7,40	72.00	5.00		1.4	0-1	1.3	
9:53	156	bone		1.40	7.50	22.79	-	34	1.6	0.1	0.9	
9:56	26	60ud		1.39	7.52	22.78	5.60	33	1.8	0.1	0.9	
10:00	Started	Sample	- Management	1001	1.00		3.70	34	1.9	0.1	0.9	
18:18	Samain	Comments of the original designation of the Publisher of										

Comments: Tubing in out - Anneschol wous

.

Page_[_of	2		Monit	oring Wel	l Low-F	low Pur	ge/Samp	ling For	<u> </u>	Projec	et: Sem - Aunua	<u>/</u>
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	mc-mi 4-24- mc-mi 7:50	Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: Water Serial #: Water Quality Meter: WQM Calibrated Date & Time: Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI 70 CPM Low-Flow or Net Purge:						4/ 41.90 130 88-1 5 1)0.46. 4_ ID: 100 LEW Flow			
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
15 -	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
7:25	Starte	DUND	11:								5/	
7:31	22	350	41.85	1-52	7.58	24.60	1.46	-4	15.5	0.1	1:0	
2:34	36	300	47.10	1.57	6.12	24,47	039	<u> </u>	19.9	0.1	100	
7:77	46	300	4297	1.53	5.75	25.00	0.02	5	20.7	0-1	100	
7:40	54	7 ex	43.34	1,53	5.60	24-95	0.00	<u> </u>	19,2	0.1	1.0	
7:43	6 <i>L</i>	700	43.61	1473	5.64	24.94	0-00	9	18.2	0:1	1.0	
7:46	76	150	43.65	1,53	5.63	24-97	0.00	10	17.1	0.1	1.0	
2:50	Stork		1.00			2	10.00	70	17. j	0.1	1.0	
8:05	Samble	y CAMA	1-4/						· · · · · · · · · · · · · · · · · · ·			
-		/										
ļ												
<u> </u>												
Comments:	44.4 /	< max	: mum	draw	down		<u> </u>					

Page_ <u></u>	i		Monit	Monitoring Well Low-Flow Purge/Sampling Form Project: Semi - Annual										
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	***************************************		Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	d Interval (ft) take Depth (' Sample Dev ling at TOC: evel Instrume al #: uality Meter uality Meter alibrated Dat	ft) ice: ent: : Serial #:	1/0 Do.Ho 1/4 Vest 1/2/1/2 1/2/1/2 1/2/1/2	Z De Q.ZZ 196	Static W Total Water C Minimu Sampler Optimal	olumn Leng m Purge Vo s Name: Pump Sett	(ft); t): gth: olume: ing: C CPM	4' 58.74 160-0 101.26 DO. A.E. 4 ID: 101 100-7 DW			
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS			
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%				
8:59	Started							2 20/0	± 1,076	76	g/L			
9:03	-//-	320	5899	1.95	6.38	25.59	0.89	-184	12.9	0.7	1 2			
9:08	21	250	5430	1.95	10.62	22-23	0.41	-189	10.4	61	4:3			
C7: 17	3L 40	900 955	59.50	1-96	<u>5-70</u>	2560	0-00	-193	22.5	0-1	7.3			
9:15	37-	355	59.65	1-45		26-35	6.00°	-194	22.4	1.1	1.3			
9:20	STOR	-325 3 50mp	<i>59.70</i>	1.95	5.62	26.30	<u> </u>	-193	27.0	O(I)	1.3			
9:35	Sampli	M Comp	Vefe											

Comments: 6/24 meximum drawdown
Tibing in well, Free product in bladder while cleaning pump no product in

Page 3 of 9 Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID Analysis:	P <u>AA-BW</u> 4-24-0 <u>AA-BW</u> 11:15	8	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: 60 Total Well depth (ft): PID Reading at TOC: Water Column Length: Water Level Instrument: WLI Serial #: Water Quality Meter: Well Diameter (in): Static Water Level (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting:								ot: Serni-Annual 4" 51.85 57.8 DO. A.K 4 ID: 101	
Time	Volume Purged	Flow Rate	Water	Specific	pH	Temp.	DO (mg/L)			rge: Salinity	TDS	MATERIAL PROPERTY AND ASSESSMENT OF THE PROPERTY OF THE PROPERTY ASSESSMENT OF THE PROPERTY ASSESSMENT OF THE PROPERTY OF THE PROPERTY ASSESSMENT OF THE PROPERTY
10:57	Liters Stowy	ml/min		3%	±0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
11:00 11:03 11:06 11:09	1.54 34 44 54	500 973 473	57.72 57. 50 51.60	81.9 81.5	6-82 6-82	27./7 27.25 27.25	7.50 0.30 0.00	-269 -271 -268	2.8 10.2 -4.2	4.0 4.0	49 49 49	
11:25 11:25	5tarle Sample	500 500 2 sampl	<u>51.60</u> 51.60	72:7 685	6.90 7.00	3734 27.29	0-00	-274 -2 7 4	-4.2 -4.3	4-0 4-0	46	
		7										
Comments:	Dedic	ated p	inf i	a well	į	vell.	smely					

Page <u> 4</u> of <u>ਤ</u> ੰ	<u></u>		Monit	oring Wei	ll Low-F	low Pur	ge/Samp	ling For	<u> </u>	Projec	ct: <u>Semi-Annual</u>	
	Date: 4.24-08 Sample ID AA-DW-1ZA Time: 12:45 Dup ID: Rinsate ID: MS/MSD ID: AA-BW-1ZA (MS/MSD) Analysis: Semi-Annual Saite Time Volume Flow Rate			Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: Ded PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:			7 P A K 2 2 096 8/7:15	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI			4° 57.35 69 17.65 D.O. 4k. 4 ID: 101 LOW-Flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
12:30	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
12:33 12:36 12:39 12:42 12:42 12:45 12:45	Situate SL SL Situate Sampli	173 500 500 500 500 500	51.40 51.50 51.65 51.70 51.70 ing left	24.7 24.7 24.1 24.1	181 688 690 691 692	26.57 26.60 26.53 26.51 26.56	0.19 0.19 0.00 0.00 0.00	-309 -310 -315 -315 -315	775:0 786-0 843.0 538-0	1.5 1.5 1.5	/S /S /S /S /S	

Comments:		
Water Black Coior		
Water Black Color	estrong odor	
	<i>J</i>	

Page of Mell ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID Analysis:	MCF-BY 4-24-0 MCF-BW 220	Screene Pump in Purging/ PID Read Water Lo WLI Seri Water Q	oring We: d Interval (ft) take Depth (Sample Dev ding at TOC: evel Instrume al #: uality Meter uality Meter alibrated Dat	ft) ice: ent : : Serial #:	57- Portal Kee Too?	7Z Ole Blade IA CK CC ba U-Z	Well Dia Static W Total Wo Water C Minimu Sampler Z Optimal	meter (in): ater Level ell depth (f olumn Len n Purge Vo s Name:	(ft): t): gth: olume: ing: CPM_	ct: Semi-Annual 41	76	
Time	Volume Purged		Water Level (feet TOC)	Specific Conductance	рН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%		
152	Storte	a pumo					22070	2 10/0	± 10%	70	g/L	
1.58	1 2 L	13551	49.88	1.68	5,23	25,97	2.77	7 7	08/			
2:01	36	スドロ	50.03	1.60	5,08	25.96	2.23	70	28.6 22.1	0.1	<u> </u>	
Z104	44	240	50.04	1.60	5.05	25.97	1.95	69	22.4	0.,	10	
2:07	.572	240	50.05	1.54	5.05	25.90	1.93		23,6	0.1	1.0	
2:/0	6L	240	50.07	1.60	5.03	25.91		69	ZZ.0	01	[]	
7:13	7/	2 Yû		Ş	5.05	3	1.91	69	2/.0	0.1	1.1	
Z:20	1-1-		50.09	1.61	5.05	2590	1 90	ЬX	20.0	0-1	7.1	
2:43	Started	Sample	<u> </u>									
13.13	Sampli	Ma Ceru	plete									
			,									
	<u> </u>						†					
				· · · · · · · · · · · · · · · · · · ·		<u> </u>						
				****	*****							
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u></u>	<u> </u>					
Comments:	50.76 One co	TS may	<u>ضه ۸ سې</u>	drawds.	منہ					· · · · · · · · · · · · · · · · · · ·		

Tubing in well

Page 1 of _	Ē		Wonit	oring We	ll Low-F	flow Pur	ge/Samp	ling Fo	: 111 <u>1</u>	Projec	ot: Semi-Anno	ial
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	Screened Interval (ft) tte:					49.5- Portal Xeck S6: Hoxiv 100709 4-23-08	la blade 11A 2 2 04: U -22 46	Static W Mater C Minimu Sampler Optimal	nmeter (in): /ater Level ell depth (f folumn Len m Purge Vo s Name: Pump Sett PSI () w or Net Pu	(ft): t): gth: olume: ing: CPM_	4" 43.62 64.5 20.88 D.O. AK. 4 ID: 101 -ow-flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
738	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
7:43 7:46 7:49 7:52 7:55 8:00 8:15	Started SL FL SL SL SC Souphi	7 () IA . () (() A		223 223 22.3 27.2 27.3	5:78 5:61 5:53 5:52 5:50	25 80 25 85 25 89 25 87 25 88	0.07 0.00 0.00 0.00 0.00	-156 -156 -157 -157 -158	158-0 138-0 138-0 178-0	1.4 1.4 1.4 1.4 1.4		
Comments:	Librig	in w	el(1,	He oc	lor			*				

Page ل of <u>ځ</u>	2		Monit	oring Wei	ll Low-F	flow Pur	ge/Samp	ling For	II)	Projec	ct: <u>Sami-Annua</u>	<u> </u>
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	17.C-M 4-23-C MC-MM 9:20 MC-MM - SOWE AM	8)-9)-9 (FD)	Pump In Purging/ PID Read Water Le WLI Seria Water Q Water Q	d Interval (ft) take Depth (Sample Dev ling at TOC: evel Instrume al #: uality Meter uality Meter uality data	ft) ice: ent : : Serial #:	90-12 110 Portale N Kec 56 Hori 70070 4-23-0	Le blade LA LC LC COM UZZ	Static W Total We Water C Minimur Sampler Optimal	olumn Len _t m Purge Vo s Name: Pump Sett	(ft): t): gth: olume: ing: CPM	4° 38.10 150° 150° -111.3 4K. D.O. 3 ID: 100 -100	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
8.48	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
\$:57 \$:57 \$:57 \$:57 \$:57 \$:57 \$:57 \$:00	Stayted NA NA NA NA NA NA NA NA NA NA NA NA NA	\$200 300 300 300 300 300 300 300	38.95 39.40 39.95 40.15 40.70 40.90 41.0 pling	1.76 1.74 1.74 1.72 1.72 1.73 1.72	5.79 5.34 5.10 4.99 4.40 4.85 4.85	26.05 26.27 26.27 26.25 26.25 26.25 26.28 26.26	Z.zc 0.99 0.05 0.00 0.00 0.00 0.00	-0 2] 43 43 57 79 89 85 88	0.6 -),9 -0.8 6,9 2.2 937 255 256	0.1 0.1 0.1 0.1 0.1 0.1 0.1	/./ /./ ./ ./ ./ ./	

Comments: 48.70 the wax water draw down
(D) on this well rubing in well

Page <u>3</u> of <u>5</u>		Monit	oring Wel	l Low-F	low Pur	ge/Samp	ling For	1112	Projec	ot: <u>Serni-Annu</u>	al
Well ID: M.CMW-/O Date: 4-23-08 Sample ID M.CMw-/O Fime: Dup ID: Rinsate ID: MS/MSD ID:		Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #:			HOSIY	0 A Hald K 27 00 U-ZZ 046	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI GO CPM Low-Flow or Net Purge:			56.96 160' 103.04 D-0. AK 3_10:_78 20U-Flow	
Time Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
Liters 10:23 Started 10:26 11 10:26 21 10:37 3L 10:35 4L 10:38 5L 10:45 Started 10:55 Scarpling	Sample	±0.1 ft 57.15 57.15 57.12 57.12 9	3% 36.2 36.5 36.5 36.4	±0.1 S.78 S.72 S.45 5.37 5.35	±0.2 25.29 25.20 25.24 25.23 25.24	±10% /.53 O.CO O.00 O.00	±10% -/SZ -/S7 -/S8 -/S9 -/S9	±10% - C.7 - C.4 1.1 8.1 /3.0	% 7.3 2.5 2.3 2.3 2.3	g/L 22 22 22 22 22	

Comments: 60.71 max. draw down	

Page of	
ruge or	

Manitaring Wall Fam.

Ca > A

rageoi_	_		MOHIL	oring we	n rom-r	tiow Pur	ge/Samp	ling For	m	Projec	ct: Somi-Anive	<u>~</u>
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	- A	ે ક	Pump In Purging/ PID Read Water Le WLI Serid Water Q Water Q	d Interval (ft) take Depth (Sample Dev ding at TOC: evel Instrume al #: uality Meter uality Meter alibrated Dat	ft) ice: ent: : Serial #:	Portal Kec S Horiba Too7	NA K 62 U-22	Static W Total We Water C Minimul Sampler Optimal	olumn Len n Purge Vo	(ft); t); gth: clume; ing: CPM_	2: //.75 /9.8 8.05 DD: A.C. U ID: 103	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
10:15	Commence	sed pump	p								8/-	
10:18	127	400 m	11-75	0.82/	6.17	24.7	3.71	164	999.0	0.5	5,5	
16:28	24	(600pm	16.75	12-825	567	24.2	3-15	179	6.999	0.5	5.5	
10:24	2.5 L	400%	11.30	0-873	5.47	24.2	2.95	177	929.0	0.5	5.5	
10:27	3:56	1600 MT	11-82	0-877	5.29	24.0	2-66	188	999.0	0.5	.5.5	
10:36	4.0 L	4 5 0ml		0.875	5.19	24-6	2.57	193	999.0	0.5	5.5	
10:33	54	450ml	11:82	0.872	5.13	27.9	2.34	197	995.0	0.5	5.5	
10:36	66	450 ml		0-873	5.10	27.9	2.21	204	618.0	ტ.5	5.5	
10:45	Started	5amp) 1'20										
10:54	Samplin	a coma	ete									

Comments:	
<u> </u>	
•	

Page	of

Project:_	Semi	Annual	
-----------	------	--------	--

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	f-055 4-15-08 PC-055 1200	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:	14-59 40' Portable Bedder NA Leck 562 Horiba U-27 T007046 4-15-08/850	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI CPM_ Low-Flow or Net Purge:	26.44 2653.60 27.16 D). AK	
		would calibrated Date & Time:	<u>4-15-08/850</u>	Low-Flow or Net Purge:	Low Flair	_

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance (')	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
11:31	Commence	ed own									ar -
11:34	14	300 ML	26.42	1,10	6.89	25.5	3.27	157	-1,0	0,6	- Jan
11:371	24	350 ml	2642	1.12	10.Z8	25.4	2.15	142	-1.3	0.60	
11:40	34	450 m	26.43	1.11	6.16	25.3	1.95	133	-1./	0.6	7
11:43	44	450ml	26.43	1.11	6.00	25.3	1.87	121	7/1	0.6	7
11:46	54	47.0 mi	2643	1.11	5.96	25.3	1.76	125	71.3	0.6	フ
1200 14	5tort 50	7 - 7	<u>, · </u>		·		<u> </u>				
12090	Sampling	Comple	†<								
	, ,	<u> </u>									
		***************************************					ļ				
<u> </u>											
							<u></u>				
							ļ				
						Į	1				

Comments:	
·	

Dago	a.f
Page	OT

Project:	Sem:	- Annual
----------	------	----------

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	MW-165 4-15-08 194-165 1:25 	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:	28.5-43.5 35: Postable bladder N/A Keck 562 Horiba U-22 TOO 7046 4-15-08/1:25	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI	72 29:46 45:70 16:24 DO AK 4 ID: 103
		vv Qivi Cambratea Date & Time.	7-15-08/1:25	LOW-Flow or Net Purge:	

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
1:35 pm	commun	ied Dim									<u> </u>
1:38 pin	,54	450	29.45	0.93	560	24.5	253	179	9990	0,5	اع
1:41 pm	_Z	450	29.47	0.93	5.39	24.4	3.40	158	499-0	0.5	6
1.44 sm	34	450	29.47	0.93	5.38	29.4	3.41	145	871.0	0.5	Ò
1:47000	41	450	2947	0.93	5.39	243	5.27	127	712.0	20	ь
1.50gm	52	450	24.47	0.93	540	24.3	6.81	118	649.0	0,5	6
1:53pm	عاما	450	29.47	0.43	5.40	243	\$.25	112	477-0	0.5	6
1:56 pm	11	450	29.47	0,93	<i>5</i> .38	24-3	j 0.00	109	500.0	0.5	6
ZOUR	started o	CARDING.									
2:1100	Sampling	Complet	ت								
											
		···									

Comments:	

Page	of

Project: Jemi - Annual	Project:_	Semi-	Annyal	1
------------------------	-----------	-------	--------	---

Well ID: Date:	PC-077 4-15-08	Screened Interval (ft) Pump Intake Depth (ft)	29.5-39.5	Well Diameter (in):	2
Sample ID	PL-077	Purging/ Sample Device:	Day of the later	Static Water Level (ft): //Total Well depth (ft):	7.98
Time:		PID Reading at TOC:	NA NA	Water Column Length:	<u> 39.00</u> 31.05
Dup ID:		Water Level Instrument:	_KecK	Minimum Purge Volume:	35.02
Rinsate ID:		WLI Serial #:	562	Samplers Name:	DO AK
MS/MSD ID:		Water Quality Meter:	Horiba U-22	Optimal Pump Setting:	
Analysis:	Semi Annual Su	从Water Quality Meter Serial #:	TOOTOUD_	PSI <u>30</u> CPM_	<u>U</u> ID: 103
		WQM Calibrated Date & Time:	4-15-08/	Low-Flow or Net Purge:	
			i i		

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	±0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
3:01	commen	ed own									81 ~
3.04 pm	12	400	85	0.684	5.44	23.1	2.99	176	132:0	0.4	4.3
3.07pm	<u> </u>	3 00	8.6	0.679	5.27	231	2.19		1790	0.4	43
3-10 pm	3,	<u> 300 </u>		0.681	5.27	23.1	2.42	141	1730	0.4	4,3
3:1300	9.5L	2500		0.683	5.47	23.3	6.33	108	271.0	_(G, <i>\\\</i>	4.3
3:16	556	.520		0683	5.51	23.3	6.41	105	239.0	P. C	4-3
3 19	6.52	250		0.687	5.53	23.3	6.32	103	2360	0.4	4-3
3:22	7.5 L	250	5.7	068Z	5.54	23.3	6.20	99	211.0	04	4-3
3:25	854	250	8.7	0.682	5.55	23.3	6.00	96	190.0	0-4	4.3
3130pm	Sterled	3	ب		· · · · · · · · · · · · · · · · · · ·						
3 43 pm	sampling	Complet	re								

Comments:	

	1		0
Dage	5	2-	7
rage	.)	OT	
0 .	\sim		

Project: Sam - Angual

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:		2	Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	d Interval (ft) take Depth (if Sample Devi ding at TOC: evel Instrume al #: uality Meter: uality Meter	ce: ent: Serial #:	275-2 285 Grante NA Keck 56 Horiba Too70 4-25-08	2 2 4/5	Static Wa Total We Water Co Minimum Samplers Optimal I	Name:	(ft): t): gth: olume: ing:	avtesia 300 Do. AK		
						/							
Time	Volume	Flow Rate	Water	Specific	**				Turbidity				

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	-/1
12:01	Started	Dump	Artosian					- 2070	2 20/0	70	g/L
12:09	54	500		1.37	7.72	25.97	7.61	- (215.0	0.1	0.9
12:12	66	500		1.37	7.83	a 6.19	6.70	6	5640	0.1	0.9
12:15	14	500		1-36	7.81	25-60	7.72	9	590.0	0-1	0.9
12:18	84	500		1.35	7.77	25.73	7.00	10	4490	0-1	0.9
12:20	Started										<u> </u>
10.08	Semply	Complete	-							-	
		-			-	***************************************					
		-									
		-									
		The state of the s									
		The same of the sa	AND DESCRIPTION OF THE PROPERTY.								

Comments:	sot water	to some	did our first	reading	12:09	
				/		

rage of	Page	of	
---------	------	----	--

Project: Semi - Annual

Well ID: Date:	FC-00Z 4-15-08	Screened Interval (ft)	16.7-31-7	Well Diameter (in):	
Sample ID	PC-002	Pump Intake Depth (ft) Purging/ Sample Device:	0 11: 3	Static Water Level (ft):	23.63
Time:	12315	PID Reading at TOC:	Portuble bladder	Total Well depth (ft):	33 45
Dup ID:	N/A	Water Level Instrument :	N/A Keik	Water Column Length: Minimum Purge Volume:	9.82
Rinsate ID:		WLI Serial #:		Samplers Name:	
MS/MSD ID:		Water Quality Meter:		Optimal Pump Setting:	D.O. A.K
Analysis:	Sensi-Annual	Water Quality Meter Serial #:	7007046	PSI <u>40</u> CPM	<u>4</u> ID: 103
	suite	WQM Calibrated Date & Time:	4-15-08/12:15	Low-Flow or Net Purge:	

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рH	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
JZ:33	Commen	red Dim	ρ								51 <u>-</u>
12.36	16	355	2363	0.764	5.00	25.6	3.40	206	999.0	0.4	4.7
17:39	24	400		0.748	484	25.4	11.59	198	7680	0.4	407
12:42	46	700			4.84	25.3	16.71	197	700.0	0.4	4.7
	54	400	23.50	0.757	4.83	25.3	19.99	192	530.0	0.4	4.7
12:48	651	700	2350	0.254	4.86	25.3	19.99	190	4300	0.4	4.7
12:51	75%	400	23.50	0.752	4.52	25.5	19.99	186	326.0	04	4-7
1pm	Sterted	*									
1:09	Sien flice	1 Couple	النياد								
	1	<i>y</i>									
<u> </u>											

Comments:	

Page	ų	of	5

Project: Semi-Annual

			r	·			· ·	~			
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	Нф	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	
11:23	Starter	Dime						2 2070	÷ 1076	70	g/L
11:28	£7	300	39.10	44-8	5.66	28.85	0.29	-129	37.9	- 20	
111:31	14	3 <i>0</i> 0	39.10	44.7	516					2.9	<u>27</u>
11:34	34	300	_3///	9.1.1	200	2600	0.39	-/32	32.2	2.9	37
11:57	31000	7	میآود د	Jopping		<u> </u>			, ,		
11:45	Stary	d ound	***************************************	1 1	المعر محر	<u>cycle</u>	is con	1 plete	<u>Checki</u>	g bho	da
11:46	5/	400	39%	43.5	5.35	350	. 30	15.5		/	
11:49	5.57	400	3910	1100	5.35	35.59	7.28	/30	27.2	3.8	27
11:50	6.5L	400	39.10	43.7	5.36	322	*****	-140	26.1	2.8	27
14	Start			7-1-1	3.70	3548	() b o	-139	27,2	2.8	27
12:15		7	1175)								
[7		·									
	<u>-</u>		·				l i		1	1	

Comments: 41.77 is maximum drawdown	
bleden colonsed	
have to unload equipment and	CON STATE
Vehical Class Little	carry it to well imable to get

Page_	Tof 5
-------	-------

Project: Semi-Annual

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	7-R-1/ 4-23- 72-1/ 1:35		Pump In Purging/ PID Read Water Le WLI Seri Water Q	uality Meter	ft) ice: ent : : Serial #:	Portale Nortale Nortale States	ole bladd JA K 22 Da U-22 O46	Static W Total Wo Water C Minimu Sampler Optimal	olumn Len n Purge Vo s Name: Pump Sett	(ft): ft): gth: olume: ling:) CPM_	4" 792 a-stes 230 D.O. 2 10: 50	sian
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
1087	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/I	
1356 1:15 1:18 1:21 1:27 1:27 1:35 1:47 1:57 1:59 2:15 2:15 2:37	Started 3/2 3/2 3/2 5/2 Started Stopped Stopped Stopped Started Sample	300 300 300 300 300 500 500 500 500 500	TOP TOP TOP ina Place blace gas f	1.71 1.70 1.70 1.70 1.70	741 742 7.93 7.93 7.95 2+ 1/1 29.00	2554 25.57 25.54 25.55 25.55 25.55	6-17 6-06 5-95 5-98 5-98 20 psi 4 dripp	64 60 60 5404 didiil u	1.9 0.8 -0.6 -1.6 -1.4 Lianck	ol Ol Ol Ol Up od Funcd out a	g/I /// // // // // // // // // // // //	es again
Comments: Starte		6 1:15 1:15	32	Durasux Ithu f ottom		o Kice	clase. Pen it	60776	m Vs	alve .	to build	

3 Tubing in plastic bag into well

Pageof/ Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	B-1 4-22-0 B-1 8:15		Screene Pump In Purging/ PID Read Water Le WLI Seri Water Q	oring Weld Interval (ft) take Depth (if Sample Develors and if the control of the	ft) ice: ent: Serial #:	44.5: Partal	-555 Na blad JA CK 26 U-22	Well Dia Static W Total We Water C Minimur Sampler Optimal	meter (in): ater Level (ell depth (fi olumn Leng n Purge Vo	(ft): t): gth: olume: ing: CPM_	ot: <u>Semi-Annual</u> 4" 39.89 59.5 19.61 D.O. A.K. 4_10: 103	
Time 7.57 \$.00 \$.00 \$.09 \$.12 \$.15 8:30	Volume Purged Liters Startes / L ? C ? L G// SI Sampli	Flow Rate ml/min Pura 9 400 400 400 400 500 500 500 50	Water Level (feet TOC) ± 0.1 ft 39.89 40.00 40.01 40.01 10.01	Specific	pH ± 0.1 (c, C) S.88 S.55 S.81 S.79	Temp. ±0.2 25.21 25.38 25.41 25.46	DO (mg/L) ± 10% C. 45 ().00 ().00 ().00		Turbidity (NTU) ± 10% 2/72.0 2/35.0 2/37.0	Salinity % /. 7 /. 7 /. 7 /. 7	TDS g/L	
Comments:	Tabir	9 ia	~ 2 (

Page <u>Z</u> of_	<u>Z</u>		Wonit	oring We	ll Low-F	low Pur	ge/Samp	ling Fo	. Tre	Projec	ot: <u>Semi-Ann</u>	<u>.ua</u> \
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID Analysis:	DPT- 9:15		Pump in Purging/ PID Read Water Le WLI Seria Water Q Water Q	d Interval (ft) take Depth (i Sample Dev ling at TOC: evel Instrume al #: uality Meter uality Meter uality Meter	ft) ice: ent : : Serial #;	Jech Siz Horiba Took	te blada VA E	Static W Total W Water C Minimu Sampler Optimal	nmeter (in): Vater Level if Vater Level if Volumn Leng M Purge Volume: S Name: Pump Sett PSI /// W or Net Pu	(ft): i): gth: ilume: ing: 7 CPM	4" 35.30 129 9.37 - DO- A.K. 4 ID: 103 Cow Flows	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
8.57	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
9:00	Started	pung	2 + 2 2	A 6.00							8/2	
9:03	1 / C Z C	1335	35.30	1.43	5.80	25-47	1.33	79	139.0	01	0.9	
9:06	32	400	<u> 32-80</u>	1.42	5-64	25.45	0.54	76	1850	(5)-1	0-9	
9:09	4/2	400	35.84	1.42	5.66	25.43	<i>ناپ</i> ن.ن	75	144.0	10.1	0-9	
9-12	+-75,	400	35.84	1.42	5.55	25.46	0.16	75	148.0	0.1	0.9	
9:15	3 6	<u> 700 </u>	36.0	1.47	5.57	25.48	0.14	75	189-0	1). 1	0.4	
9:130	Starte							, , , , , , , , , , , , , , , , , , ,				
15/.30	Sampli	A Come	2 4		************							
ļ												
												
	<u> </u>											
	ļ											
L	1			***************************************						<u>-</u>		
Comments:	Tab	e in	<u>(cell</u>									

Page 3 of	3		Wonit	oring We	ll Low-I	flow Pur	ge/Sam _I	oling For	m	Projec	ct: <u>Semi-Anna</u>	· ·
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	GW E 4-22- GW-E 10:2 Semi-An	08 C- 7 O	Pump In Purging/ PID Read Water L WLI Seri Water Q	d Interval (ft take Depth ('Sample Dev ding at TOC: evel Instrume al #: uality Meter uality Meter	ft) ice: ent: : Serial #:	Pontal Lec Kec S62 Havi	: Du U-27 046	Static W Total We Water C Minimum Sampler Optimal	ameter (in): later Level ell depth (f olumn Len m Purge Vo s Name: Pump Sett PSI 7(w or Net Pu	(ft): t): gth: olume: ing: CPM	2" 53.3 65' 11.7 DO-1k 4_10:103 Low-Flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
10:02	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
10:05 10:08 10:11 10:14 10:17 10:20 10:33	JATES JA JL JL JL SL SL Starte Bangin	700 700 700 900 400 1 Sam	53.3 52.3 52.5 53.25 53.25 Line	16.3 16.2 16.1 16.0 15.9	5.74 5.67 5.63 5.61 5.61	2691 2500 2501 2501	1./8 ©.00 ©.00 ©.38 0.40	-215 -214 -212 -210 -209	999.0 \$16.0 3240 164.0 165.0	1.0 1.0 0.9 0.9 6.9	10 10 10 10 10	

	1	Į.	
Comment of the state of the sta	<u>-</u>	1	······································
comments: water brown color the odor when we started	[ch	_
we went on.	<u> 901 </u>	stonger a	<u>ک</u>

Page 4 of	4		Monit	oring Wel	ll Low-I	low Pur	ge/Samp	ling For	m	Projec	ct: <u>Semi-Aun</u>	ral_
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	EC-02 4-22-0 EC-02 11:45	58	Pump in Purging/ PID Read Water Le WLI Seri Water Q Water Q	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #:			70 1. Wadd K 7 De U-77 546 8/8:40	Static W Total Water C Minimul Sampler Optimal	meter (in): ater Level (ell depth (fi olumn Leng n Purge Vo s Name: Pump Setti PSI 70 w or Net Pu	ft): i): gth: lume: ing: CPM_	-4" 56.25 8.75 D.O. AK	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
//:25 11:28 11:31 11:37 11:37 11:40 //:45 11.54	Liters Started JL 3C 4C SC Started Sompli	YOOM YOOM YOOM YOOM Samyis Y Comfl	e4e.	3% 29.8 29.7 29.7 29.7	±0.1 6./Z \$ 93 \$.9/ 5.90 5.90	±0.2 27.03 27.03 27.02 2).02 2).02	± 10% 3-72 1-79 1-57 1-54 1-49	± 10% -208 -218 -219 -219 -220	± 10% /69.0 /52.0 860.0 705.0 702.0	% 1.9 1.9 1.9	g/L /S /8 /8 /8	
Comments:	<u>well</u>	depth.	is b	ter ?	<u>70'</u> υ	ueil s:	mells.					

Page_ <u>5_</u> of_2	_		Monit	oring Wel	ll Low-F	low Pur	ge/Samp	ling For	in.	Projec	t: <u>Semi-Annual</u>	-
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID:	Ec-1 9-22-0 EC-1 1:00 EC-1(N Semi-A	7 pm 15/MSD)	Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	d Interval (ft) take Depth (i Sample Devi ling at TOC: evel Instrume al #: uality Meter: uality Meter	ft) ice: ent : Serial #:	-	k Z a U-ZZ 46	Static W Total Wo Water C Minimun Sampler Optimal	Imeter (in): later Level ell depth (fi olumn Len m Purge Vo s Name: Pump Sett PSI 660	(ft): t): gth: olume: ing: CPM_	4° 54.50 70 15.50 D.O. A.K. 4 ID: 1016 Low-Flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
/2!38	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
12.41	Started	400	7/15		,							
12:44	74	400	54,65	99.9	6.10	25.44	0.99	-45	498	4.0	99	
12:47	32	400	5468 3469	99.9 99.9	583	3233	0.30	-15	82.4	4.0	99	
12:50	46	400	54.70	99.9	5-64	25.0	0.00	23	3320	4.0	90	
12:53	57	400	54710	99.9	5,60	35/5	©′09	26	3360	4.0	79	
12:56	66	400	5470	99-9	5.59 5.57	25.05 25.09	0-00	28	3340	4.0	99	
1:00	Stark	Samol		99 -4	<u> </u>	<u> </u>	0-00	30	331.0	4-0	99	
1:23		6 Condo										
		7	41									
		<u> </u>										
												
Comments:	light	oder c	valer c	loudy								

Page 6 of 6			Monit	oring We	II Low-I	Flow Pur	ge/Samp	ling Fo	:m	Projec	ct: <u>Semi-Annual</u>	
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	3-7 4-22- 3-2 2-5 Seni-Any		Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	d Interval (ft) take Depth ('Sample Dev ding at TOC: evel Instrume al #: uality Meter uality Meter alibrated Dat	ft) ice: ent: : Serial #:	Portal Portal Kee Sisteman	de bladd A K 2 2 2 4 3 4 5 6	Static W A Total W Water C Minimu Sampler Optimal	imeter (in): later Level (ell depth (fi column Len m Purge Vo s Name: Pump Sett PSI 18 C w or Net Pu	(ft): t): gth: olume: ing: CPM_	41 53.41 59.5 6.09 D.o. Ak 4 ID: 100	
Time	Volume Purged		Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
1:570	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	~ /i	
1:58	Starte								_ 1070	76	g/L	
Z-01	1.51 2.52	450	53.42	16.4	5.49	25.5%	1.69	-118	12.3	1-0	7/	
2:04	3.52	7.00 4.00	53.44	17-5	5-44	25.52	0.20	-//8	13-8	1-0		
2207	4-56	7.00 Yor	53.46 53.46	17.6	5.42	25,42	O.00	-116	17.5	1.0		
2:10	5,52	Lov	53.47	17.6	5.41	25.43	Q-00	-115	16.2	Z-0		
2:15	Starte	I sand,	· · · · · · · · · · · · · · · · · · ·	17.0	5.42	25.43	<u>D-00</u>	-115	16.0	1-0	11	
2:35	Sampli	a Comol						·				
		J 1	7 M									
1										<u> </u>		

comments: Purge the least amount of Hat as possible as the tubing was cut a little

\

Page of Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	AA-M 4-21-0 AA-M 9:40		Screened Pump In Purging/ PID Read Water Le WLI Seric Water Q	uality Meter uality Meter) ice: ent : : Serial #:	33- Portal Kec 56- Horib Toota	53 blablad 1A 1 K 2 a U-22 246	Well Dia Static W Total W Water C Minimu Sampler Optimal	meter (in): fater Level (ell depth (fi folumn Leng m Purge Vo s Name: Pump Sett	(ft); t); gth: lume:	ot: Semi-Anno 4" 38.35 53.5 15.85 Do. 4K 4 10: 103	nal
,			WQM Ca	librated Dat	e & Time:		8/8 20pm	Low-Flo	w or Net Pu		Low Flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
0:4=	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%		
9:15	Started	1400m	:00 =					2 2070	- 10/6	70	g/L	
9:21 9:23 9:26 9:29 9:32 9:32 9:50	76 36 46 52 66 Starte Samplin	400ml 400ml 400ml 400ml 400ml 800ml	38.55 38.58 38.59 38.59 38.59	31.1 30.5 30.3 30.3 89.7 29.5	5.74 5.76 5.76 5.76 5.76 5.76	29.25 29.63 29.63 29.30 29.30 29.30	0.15 0.00 0.00 0.00 0.00	79 (7.00) (69 70 71	46.9 23.9 15.9 16.0 15.9 16.1	1.9 1.9 1.9 1.9 1.9	19 19 19 19 19	
Comments:	tubine		1/04									

Page Zof_	2		Wonit	oring Wei	ll Low-F	low Pur	ge/Samp	ling For	311	Projec	ot: <u>Semi</u> - Anno	Jon
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	F.C-9 4-Z1-6 EC-6 10:45 Semi-A	28	Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	uality Meter	ft) ice: ent : : Serial #:	Sie Portax N Kol	//A : K : Z : Da. U-Z : DY6	Static W Total W Water C Minimu Sampler Optimal	olumn Leng n Purge Vo	(ft); i): gth: lume: ing: () CPM	Z" 49.0 59.5 10.5 D.O. A.K. 4 ID: 103 Low-flow	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	1.450/			
11.22	Start	puno	BASE!				= 10/0	£ 10%	± 10%	%	g/L	
10.25	186	400 WCL	49.5	38.9	6.60	29-63	0.12	224				
10-28	ZZ	48011	50.0	38.7	6.49	29.67		-230	279.0	2.5	24	
70:31	7 4	400mL	50.01	37.5	6.46	29.70	0.01	- 229	1850	24	23	
17/2374	46	400 ml	50.01	37.2	6.40		0.00	-230	1190	2,4	7.3	
10:37	SZ	40001	572.01	37.	The state of the s	29.24	0.00	-236	91.4	2.9	2)	
10:40	61	400 201	57101	37.1	6.39	27.25	0-66	-236	86.2	2.4	23	
10:45	Start	Sampling	511-01	26-1	6-40	27.25	<u> </u>	-237	86./	2.4	23	
10:58	Sampling	Complete				<u> </u>						
	717	Carples	_									

<u> </u>												
								· · · · · · · · · · · · · · · · · · ·				
L			-									
Comments:	Tobing	<u>1 i ω</u>	ell b	lact colo	Y ÎN	water	1 5×7	venely	nasty	oder		

Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID:	EC-6 1-08 CEC-6 10pm	Screene Pump In Purging/ PID Read Water Le WLI Seri Water Q	oring We: d Interval (ft) take Depth (' Sample Dev ding at TOC: evel Instrume al #: uality Meter uality Meter	ft) ice: ent : : Serial #:	_SO.S 	-65.5 de bladd ### ## ## ## ## ## ## ## ##	Well Dia Static W Or Total Wo Water C Minimul Sampler Optimal	nmeter (in): 'ater Level ell depth (f olumn Len m Purge Vo s Name: Pump Sett	(ft): i): gth: llume: ing: CPM	ct: Semi-Ann Z' 57.32 V.8-5 /1.18 D.O. A.K 4 ID: 103	<u>val</u>
Time Volum Purge	d Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp,	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
Liters 11:44 Stan		± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
11:57 11 11:54 22 11:57 31 12:00 41 12:00 51 12:10 5fav 12:26 50mfl	400 400 400 400 400 400 400		8.97 7.87 8.40 8.45 8.44	5.93 5.98 6.02 6.02 6.02	31-66 42-16 42-19 41-25 39-99 41-0	6.21 6.00 6.00 7.00 6.00	-130 -129 -132 -139 -141 -142	328.0 358-0 347.0 290.0 253.0	0.4	5.9 5.1 5.3 5.4 5.4	

Comments: (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
- MOUGA (IL WIELL MAGY CO	hatta in land
Comments: Lubing in well marked of W-A	- 00: N TUDES Class

.

Page 4 of 4 Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MIS/MISD ID: Analysis:	26-03 4-21-08 EC-03 21/0		Monitoring Well Low-I Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:		Flow Purge/Samp. 50-70 45 Portage blood NA Leck 562 Horiba U-22 7007046 4-21-08/872044		Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI			ct: Semi-Annual 4 4275 70.00 27.23 DO-AK 4_10: 101		
Time	Volume Purged		Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
1:47	Liters Started	ml/min Ostraf	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
1:50 1:53 1:56 1:54 2:02 2:05 2:10 2:10	11 / 26 34 46 57 64	460 400 400 400 400 400 400 5ampling		/0.4 12.5 12.5 12.5 12.3 12.3	\$ 566 \$ 56 \$ 56 \$ 57 \$ 59	3028 44-76 44-76 44-44 44.44 14.44	0.03 0.00 0.00 0.00 0.00	- // 3/4 32 30 30 39	97.8 38.1 37.2 36.3 29.5 90.0	0.8 0.7 0.7 0.7 0.7 6.7		

Comments: 10b	in in well	

Page 5 of 5	<u>5</u>		Wonit	oring We	li Low-F	low Pur	ge/Samp	ling For	Tre	Projec	et: <u>Senai-Ann</u>	nal
Date: 4-ZI-58 P Sample ID AA-MW-13 P Time: P Dup ID: W Rinsate ID: W MS/MSD ID: W Analysis: Somi-Annual Suick			Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #:			31.5 lol-3 Loo Dortable blacker WA Kekk S62 Herriba U-22 Joe 7046 4-21-05/820		meter (in): ater Level ell depth (f olumn Leng m Purge Vo s Name: Pump Sett PSI	(ft): t): gth: olume: ing: CPM	2/" 34.89 70.00 38.11 Do. Ak 4 10:	>
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TOS	
2:59	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
3:03 3:06 3:09 3:12 3:15 3:20 2:30	Starte 1.52 2.51 3.51 4.51 Starter Somfling	400 400 400 400 400 3000		24.1 22.5 25.6 25.6	10.65 10.65 10.37 10.30	41.98 51.73 49.03 49.06 48.84	10.00 0.00 0.00 0.00 0.00	-/74 -/77 -/72 -/72 -/72	73.6 8.90.0 70.00 80	1.5 1.9 1.6 1.6	16 16 16 17	

Comments: $\langle (1) \rangle \langle (0, 2) \rangle \langle (0, 1) \rangle \langle (0, 2) \rangle \langle $	
Comments: 100mg (n we)	
)	
<u></u>	

Page_	C	of	6

Project: Semi-Anneal

Date: 4-19 Sample ID 6W Time: 8: Dup ID: - Rinsate ID: \ MS/MSD ID: -	EC10 -08 -EC10 -00 -Aunual Suite	•	Leck 552 Too 2004 6Horian Too 7046	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI 60 CPM Low-Flow or Net Purge:	Z 43.35 89.30 15.95 D.O. A.K 4 ID: 103	
				~ <u>-</u>		

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
7110-	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
7.140	Started	DOM D									6/4
7:45	14	450	43.35	2.76	568	27.25	3.60	217	613.0	0.1	1.8
3:68	352	450	43.35	2.79	5-67	27.35	3.33	214	Z89.0	0-1	1-8
7:5%	3-52	450	43.35	2.83	5-21	27-38	3-08	211	2780	0.1	1-8
7:54	51	450	43.35	2.85	5.71	27.59	2.66	210	2920	0-1	1-8
8:00	66	450	43.35	2.88	5.71	2756	2.57	209	288.0	0-1	1.8
8:21	Started	Samplin	4				·			<u> </u>	7.9
8:21	Samplin	y Comple	<u> </u>	···							
					· · · · · · · · · · · · · · · · · · ·				***************************************		
<u> </u>			, <u> </u>								
<u> </u>											
L											

Comments:	- 10 bing	in well		

Page_	2	of	£
lugo	6	v	260

Project: Semi - Augual

Well ID: Date: Sample ID Time: Dup ID:	H-11 9:45 -	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument:	Portable bladde WA Keck	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume:	6" 6 9.88 103: 34.13
Rinsate ID:		WLI Serial #:	562	Samplers Name:	D-0. 414.
MS/MSD ID:		Water Quality Meter:	Horiba-UZZ	Optimal Pump Setting:	
Analysis:	Semi-Aurua Suife		7007046	PSI_90 CPM	4 10: 103
		WQM Calibrated Date & Time:	4-19-08/ 7:15	Low-Flow or Net Purge:	

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
9:09	Started	pump									
9:22	14	450	69.88	0.687	7.66	60.00	0.00	·8	19.7	0.0	0.41
9:25	کر	450	69.40	0.586	5.15	60.00	0-00	17	18.3	0.0	0-37
9:28	34	450	69.48	0.588	5.08	66-00	0.00	7	16-5	0.0	0.38
9:31	90	450	69.48	0-667	5.08	60.00	O-00	7	17-0	0-0	O-38
9:34	<u> </u>	450	69.42	0590	5.07	60-00	<i>Q •00</i>	-4	20-/	0-0	७-38
9:37	64	450	69-82	0589	5.08	00-00	0-00	-16	219	0-0	0.38
9:40	24	4.50	19:43	(9592	5-10	Ø6.00	0.00	- ZO	Z3.Z	0-0	<u>ت</u> -38
9:45	Started	samplin	a							<u> </u>	
9:56	Sampline	comple-	Le								
									***************************************		· · · · · · · · · · · · · · · · · · ·
					****			<u></u>			
											~

Comments: Temp: Flashing a	+ 60%		
Key 3210 did not work c	/ / / / / / / / / / / / / / / / / / / /	0	
ast to OUC	n lock we polled	monument colum	Up to
	*		
Water gray Color odor			
9 ,			

Page	301	6
. ~⊳~.	<u> </u>	

Project: Semi-Annual

Well ID: Date: Sample ID Time: Dup ID:		<u> </u>	Pump In Purging/ PID Reac	d Interval (ft) take Depth (f Sample Devi ling at TOC: evel Instrume	ft) ice:	84- 10- 2000 1000 1000	3/ Ne blable 14	Static W Total We Water C	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length:		60.53 114.0 53.47	
Rinsate ID: MS/MSD ID: Analysis:	Semi-Au	inval Su	WLI Seria Water Q Water Q		: Serial #;	70070	<u>.</u> 4-zi 46	Sampler Optimal	Pump Sett	ing: CPM_	DO-AK DO AK 4 ID:101	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
<u></u>	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
10:15	Star to	sq Ormi									8/*	
10:18	1-74-	400	6054	0.685	590	100-00	0.41	202	32:7	0.0	0.07	
10:18	Starte	to re	Cossi Drav	د						17:57		
10:28												
10:31	强仁	400,00	61.50	0.088	4,12	60.00	19.32	172	1,49	0.0	0.45	
10:34		400ml		0.695	503	60.00		17/	9.7	0.0	0.44	
10:37	145	400ml		0.641	5.04	60.00	0.34	172	8.8	6.0	0-94	
10:45	Storte	& Sampl	Y						-			
10:56	Sample	Comple	H						***************************************			
3	 											
	<u> </u>		ļ									

<u> </u>			<u> </u>									
Comments: No		stop/ stop/ at 60	2 1000	mp: a	f 60.0 at 10	00 \$\frac{1}{28 m}	stopp	ed re	calibr	ated t	otry and stok	` <i>†</i>
	- 					·						

Page	\mathcal{L}_{of}	6
------	--------------------	---

Project: Semi - Annual

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID:	AA-MW5 4-19-08 AA-MW-5 17:05	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #:	Fortable bladder NA Keck 562	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name:	5036 64.0 13.64 Do. 4K
· .		Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:	Horiba U-27 7007046 4-19-08/7:15	Optimal Pump Setting: PSI ZO CPM Low-Flow or Net Purge:	4 ID: 103

Time	Volume Rurged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
11,22 5	2 Liters	ml/min	±0.1 ft	3%	£ 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
11:39	Started	pump									8/ 5
11:44	IXL	400	50.09	3_19	545	30.69	342	140	10:0	0.2	2.
11:50	3,5Z	400 400	50.81	3.30	<u>.5.3)</u>	29.13	3.00	146	0-0	0.2	2.1
11.53	456	·	50.83	3.31	5.25	28-89	2.69	147	00	0-2	2./
11:56	5.5%	<u>400</u> 400	50.90	7.31 3.32	5-23	28.84 28.80	2:65	150	<u>6-0</u>	<u>0.2</u>	2./
12:05	Started		7		5-21	20.80	2.62	1.52	ଅ-୦	0-2	2.1
12:13	Samolin	3 Com 0									
	•	J 1	, N								
ļ				· · · · · · · · · · · · · · · · · · ·						~	
<u> </u>											
		~									
ļ											
<u></u>											
<u> </u>									· · · · · · · · · · · · · · · · · · ·	*****	

Comments: 1/32? Started pump had	bladd askeral II a st	
restarted at 11:39 4	Drugger from the real to repart it	
		_

Page	5 of	15
0-		

Project: Semi - Annual

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	4-19-08 CP-1 1:30 CP-1 m5/m5D Semi-Annual Suite	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:	Portable bladder Keck Stoz Horina U-22 Too7046	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI O CPM Low-Flow or Net Purge:	_	**C
***************************************	T					

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
-	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
1:00	Stayte	1 pump				X				70	5/ -
1:05	1.5/	400 rd		1.09	.5.15	33.86	0.95	170	42.5	0.0	0.7
1:06	2-5Z	40 Oml		1-08	5.04	32.77	1-17	175	32.4	0.0	Ø : 7
1209 1212	12/100	400 m2	37.3		4.92	33.00	1-56	185	16.0	0-0	0.7
1:15	5.51	400 ml	37,4	1.10	4.69	34.56	215	186	6.8	0.0	0.7
13/8	-	400ML	37.4	1.08	4.69	38.09	1.38	184	00	0.0	0.7
7.30	10.35 Started	400ML	37.4	1-08	4.67	35,00	1.36	189	0.0	0.0	0.7
1:55	50-9/1.	Sampling Complin	3 3			~					
	7	7 - 4									
								·			
					~ 	······					
		,									
								······································			
		······································	***************************************					***************************************		***************************************	

comments:	

. /	· 1.
Page &	of 6

Monitoring Well Low-Flow Purge/Sampling Form Project: Semi - Amusa

			-			•	<u>.</u>			110,00	cc. some ATTITUS	<u> </u>
Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	H-13 4-19-0 H-13 3.00p		Pump In Purging/ PID Read Water Le WLI Seri Water Q Water Q	d Interval (ft) take Depth (i Sample Devi ling at TOC: evel Instrume al #: uality Meter uality Meter dibrated Dat	ft) ice: ent : : : Serial #:	Horib Too	ble bled 1/A- 2ck 62 a U-27	Static W Total Water C Minimun Sampler Optimal	imeter (in): later Level (ell depth (fi olumn Leng m Purge Vo s Name: Pump Sett PSI 2 Co w or Net Pu	ft); ;}: gth: lume: ing: CPM	10" 38.0 80 42.0 Do. 45. 4 ID: 103	
Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
2:40	Liters Started	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
2:52 2:52 2:55 3:00 3:15	3L 3L 4L 5L Started Sample	400 400 400 400 400 400 Sampi	38.16 38.16 38.20 38.20 ing	1.25 1.27 1:31 1.32 1.32	1289 6.67 6.49 6.45 6.42	29.40 28.53 28.43 27.98 27.96	7.5Z 7.63 7.58 7.61 7.58	140 150 157 160 162	29.3 \$.4 0-0 0-0 0-0	0./	0.8 0.8 0.8 0.8 0.8	
ļ		 				ļ	<u> </u>	<u> </u>				

comments:	
-1	
·	
·····	

Page 🔏	_of	Z
--------	-----	---

Project: Sem: Annual

Well ID: Date: Sample ID	MW-U 4-18-08 MW-4	Screened Interval (ft) Pump Intake Depth (ft)	30'	Well Diameter (in): Static Water Level (ft):	Z /S:75
Time:	9:10	Purging/ Sample Device: PID Reading at TOC:	. /	Total Well depth (ft):	3670
Dup ID:	MW-4 (FD)	Water Level Instrument :	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Water Column Length: Minimum Purge Volume:	<u> 20.95 </u>
Rinsate ID:		WLI Serial #:	562	Samplers Name:	AV Da
MS/MSD ID: Analysis:		Water Quality Meter:	Horiba U-ZZ	Optimal Pump Setting:	AK., D.O.
Analysis:	Semi Annual Suite	Water Quality Meter Serial #: WQM Calibrated Date & Time:	T007 0 46	PSI <u>SO</u> CPM_	<u>4</u> ID: <u>100</u>
,		wdw campraced Date & Hille:	4-18-08/8:00am	Low-Flow or Net Purge:	Low - Flow

TDS
g/L
3.4
2 4
3.4
3-4
3.4
3.4

Comments: Call Ted Moore at office 547-1656 Call Sol Com	
into acted aven	to get
tube in well	

Page	Zof	Z
. ~~		

Project: Semi-Annual	Ĺ
----------------------	---

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID Analysis:	= 6 4 4-18-08 = 0-4 //205 Somi-Annual Suite	Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: Water Quality Meter Serial #: WQM Calibrated Date & Time:	Keck S6Z Horiba U-2Z	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI CPM_ Low-Flow or Net Purge:	47.70 70.0 22.30 DO.AK 4 ID: 101
--	---	--	----------------------------	---	--

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
(10.)	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	
10:42	Started	Dump							_ 2070		g/L
10:45	_/	400M	47.7	0.400	5.79	25.8	7.28	2/2	13.7	0.2	2.6
10:48	<u>2L</u> 3C	400ml	42.7	0-400	5,67	25-8	6-51	212	14.1	0.2	2.6
10:51	9L 4E	400ml	48.91	0-401	5-37	259	4-84	Zoz	17-7	0-2	2.6
10:57	76	400ml	48:1 48:2	0-401	5.38	25.9	4.76	2 00	15-1	0.2	2.6
10:55	To E	400 nl	48.25	Q-40Z	5-25	25.9	5.05	193	11.16	0-7	2.6
10:58	77	400ml	18.30	0.702	5.36	259	8.64	187	120	0.2	2.6
11:01	84	400 ml	48.30		5-36 0.36	25.9	11-22	186	13.8	0.2	7.6
11:05	Starte	som Oliv		<u>U-9-C)</u>	3.26	23.9	12.37	182	12.6	O-Z	2-6
11:21	Samplin	es Comp									
	4										

Comments: well	has tube inside

Page	of

Project: Son; - Annual

Analysis: Since 1 - Color Overline Nature Color of the Mater Color of	0 4.k. 101
---	------------------

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
8:41	Started	puns							/	,,,	8/4
8.44	1/4	400	37.55	0.413	5.45	24.1	1.71	229	8.6	0.2	2.7
8:49	2.51	450		12.417	547	295	1.59	233	56	0.2	Z-7
8:59	45L	450	2755	0.418	5.45	<u> 295</u>	1.65	234	10-1	0.7	2,7
9:05		Somplin	27.55	0-418	5.47	24.5	1.98	235	8.2	OZ	2.7
9:18		a Como					<u> </u>				
		7	E)C								
							<u> </u>				
							<u> </u>				
											,
	 										
						·					
	1										

Comments: Spoke to Darrell Meyers he said to cut the lock on gate the	
replaced it with their own lock well has our lock on it 3210	

Page_	1	_of_	i
-------	---	------	---

Project: Semi-Annual	
----------------------	--

Well ID: MW-Kl Date: 4-17-08 Sample ID MW-Kl Time: 10:20 Dup ID: Rinsate ID: MS/MSD ID: Mw-Kl (MS/MSD) Analysis: Somi Annual Suite	Ceck 567 Horiba U-ZZ TOO TOYB	Water Column Length: Minimum Purge Volume:	2' 9.58 20.45 10.95 D.O. A.K. 4 ID: 101 Low-Flow
	100/800	row-now of Mer Furge:	Low-flow

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
9:5%	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
	punp							108			8/4
10:00	1/2	4 Sal		1.12	620	256	1.82	4910	491.0	0.6	7
10:03	34	450ML	9.58	1.12	6.18	<u> </u>	1.76	102	3670	0.6	7
10:06 10:09	4.56	450ml	9.50	1,/3	613	25.6	1.63	95	2500	19.6	7
10:12	10.L	450mL	9.50	1.12	6.16	32.)	1.55	87	155.0	0.6	7
10-15	81	450ml	9,50	1.13	6,07	25.5	1.52	89	130.0	19.6	7
10.18	92	450ML		1.13	607	35.5	1.49	87	106.0		7
10:20	Started			1:15	6.07	25.5	1-47	<u> </u>	96.3	0-6	7
10:48	samplin										
212 11	3CM PAN	J. Compi	C/C					******			
			<u> </u>			· · · · · · · · · · · · · · · · · · ·					
	·							····			

Comments:	
· · · · · · · · · · · · · · · · · · ·	

Page of

Project: Semi- Hunga

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:		Screened Interval (ft) Pump Intake Depth (ft) Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter: eWater Quality Meter Serial #: WQM Calibrated Date & Time:	N/A Keck 562 Horba U-22 T007046	Water Column Length: Minimum Purge Volume:	2' 32.06 43.30 11.29 D.C. 4k 4_10: 101 Low-Flow
---	--	---	---	--	---

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
1/20	5 tour ted	oump									8/ -
11:25	14	400	32.06	1.23	5.77	24.5	5.48	129	9990	0.7	8
11:30	3.5%	400	32.06		5-62	24.5	4.24	129	999-0	0.7	Š
/1.35	554	400	32.05	1.23	5.50	24,5	5.57	130	9990	0.7	8
11:40	7.5L	400	32.05	1-22	5.46	24.5	8.49	131	730.0	0.7	Š
11:48	9.51	400	37.95	1.22	5.47	24-5	11.20	<i>13</i> 0	6380	0.7	8
11.50	11-54	400	31.95	1.22	5.47	24.5	12-16	130	443.0	ר"ם	Š
11:50	13.5	400	31.95	1.22	5-46	<u> 245</u>	13:01	128	4450	0-7	8
12:09	1	ي وعام س			~···						
12.09	Samples	Complet	2								
			·····								
	<u>i </u>	<u> </u>									

Comments:	

Project: Semi-Annual

Well ID: Date:	mw-3	Screened Interval (ft)	15-45	Well Diameter (in):	Z'
	4-17-08	Pump Intake Depth (ft)	<u> 30°</u>	Static Water Level (ft):	ZZ.31
Sample ID	mw-s	Purging/ Sample Device:	Portable blader	Total Well depth (ft):	42.30
Time:		PID Reading at TOC:	<u>NA</u>	Water Column Length:	19.99
Dup ID:	·	Water Level Instrument :	Keck'	Minimum Purge Volume:	
Rinsate ID:		WLI Serial #:	5762	Samplers Name:	DO AK
MS/MSD ID:		Water Quality Meter:	Horiba U-22	Optimal Pump Setting:	
Analysis:	<u>Semi-Angual Suite</u>		TOO7046	PSI 60 CPM	Ý ID: /n/
		WQM Calibrated Date & Time:	4-17-08/830	Low-Flow or Net Purge:	Low-flow

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	рН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	a/I
/2:37	Dim Sitorta		瀏						2 2070	70	g/L
12:40	12	400	* \$70 223	097	6.85	22.9	3.04	126	89.1	0.5	6
12:43	1.54	400	2201	0.97	6.83	229	2.79	121	560	05	b
12:46	2.52	40 0 400	22.31	097	6.78	230	2.63	117	34.8	0.5	6
12:49	3.56		2731	0.96	6.77	23.0	2.57	115	44.5	0.5	6
12.52	4.50	८००	2231	0-96	6.75	23.0	2.54	113	32.3	0-5	6
12:55	5.56	(00	22.31	୦.୧୮	6.75	23.0	2,50	117	29.9	O-8	6
1:00	Started	Limplina									
1:18	Samplin	y Compt	etc	****							
	<u>'</u>	,									
ļ											
<u> </u>											
ļ											

Comments:	

Page	of
· ~ ~ ~	0.

Project: Semi - Annual

Rinsate ID: WLI Serial #: SGZ Samplers Name: A.k. D.O. MS/MSD ID: Water Quality Meter: HON 1 No. U-ZZ Optimal Pump Setting: Analysis: Somi-Aurual Suite Water Quality Meter Serial #: TOO 7046 PSI 40 CPM 4 ID: 101 Low-Flow or Net Purge: Low-Flow	MS/MSD ID:		Water Quality Meter: Water Quality Meter Serial #:	Keck 562 Horina U-22 Too 7046	Samplers Name: Optimal Pump Setting: PSI 40 CPM	<u>4</u> id: /0/	
---	------------	--	---	--	---	------------------	--

Time	Volume Purged	Flow Rate	Water Level (feet - TOC)	Specific Conductance ()	pН	Тетр.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L	
2:110	Started	oum o									5/2	
2:20	1.52	400ml	5.01	0.419	6.15	20.6	3.07	189	999.0	0.2	2.7	
2:23	3,54	400nL	5.01	0-420	6.05	20-6	1.82	178	922.0	0-2	2-7	
2:26	3.5L	400 ml		0.420	6.04	20-6	1.55	168	424-0	0-2	2-7	
2:32	{	400 mc	5.01	0-420	5.98	<u>20-6</u>	1.40	167	337-0	0-2	2 7	
7:35	76	400ml 400ml	501	0-420	6.02	20.5	1-31	156	182.0	0-2	2.7	
a:38	86		5.01	0-420	6-00	<u> </u>	1.30	1,50	145-0	0-2	a·7	
2:41	91	400 M	.S.0/ 5.03	0.470	5.99	50.5	1.17	147	140.0	0-2	2.7	
2:445	Started			0-420	597	20.6	1.15	144	148-0	6-2	2-7	
2:59	Samplin	J .	,				<u> </u>					
2-01	July	1 compli	5.76									
· · · · · · · · · · · · · · · · · · ·		WW										

	ii						ł			1		

Comments:	cut_	OF 1	lock	needs	new one			
			····			 ***************************************		
							·	

Page	of
. ~~~~	

Project: Seni- formal	
-----------------------	--

Well ID: Date: Sample ID Time: Dup ID: Rinsate ID: MS/MSD ID: Analysis:	PC-064 4-14-08 PC-064 10:04 Semi-Annual sigite		4-19 16 blee Potable bladder Ryt Keck 562 Horiba U-ZL Too7046	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting: PSI GO CPM	7.49 18.28 10.79 D. Ortega 4 ID: 99	btec btec
,	German Susan	WQM Calibrated Date & Time:	4-14-08/10m	Low-Flow or Net Purge:	7 ID: 77	

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS
	Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
12:25	Commence	Jed Pury	2								8, -
12:38	1 6	450 ml	2.50	0.93	211	23.3	221	206	2520	05	6
1035	24	450	7.50	093	7.00	22.9	1.52	195	205,0	0.5	6
10:38	44	450	7.58	0,91	403	23.0	1.47	250	209.0		7
10:41	64	450	7:58	6.90	4.53	72.9	1.69	285	202.	0.7	i i
10:44	74	450	7.5%	090	4.48	27.0	757	293	141.0	0.6	7
10:45	7	pour									
11:50	104	/ 2 -	757	0.97	6-49	23.1	8.47	230	494.0	0.6	6
11:57	132	420	7.50	0.97	6.49	23.1	9.00	226	840.0	6. 5	چ
11:56	141	450	7.51	0.92	6,55	23-1	9-28	ZZC	781.0	42×	6
11:59	156	450	7-57	0.9Z	fe-51	222	2-36	217	4230	0.5	ن ن
12.02	154	450	7.57	0.92	6.54	23.2	9.30	215-	328.0	0-5	6
12:05		450	7.57	0.92	4-62	23.2	9.25	212	370.0	0.5	6
12:10	started s	<u>anplinj</u>									
12:25	Sampley	conflete									

Comments:	
	

Page	of
rage	Oŧ.

Project:_	Semi	- A	nnu	al

4-15-6 PC-06 7:45 Am W/4 W/A	Purging/ Sample Device: PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter:		Portable bladd Total Well depth (in Water Column Len Minimum Purge Volume Samplers Name: Horibi U-ZZ Optimal Pump Set Too 7046 PSI 46			(ft): t): gth: ilume: ing: CPM_	2' 11.70 33.76 22.06 20 A.K 4 ID: 101	btoc btoc			
Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance ()	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	TDS	
Liters	ml/min	± 0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	σ/I	_
Commence						<u> </u>				8/ 5	
1	} <u>-</u>	11.80	1.22	5.57	24.3	4.22	206	9990	8.7	8	
	· · · · · · · · · · · · · · · · · · ·	14.80	1.24	5.60	24-3	7.87	·				
	·	11.8	1.27	5.53	24.3	2.48					
		11.8	1.29	5.48							
5	400	11.8	1.32	5.47	· · · · · · · · · · · · · · · · · · ·		·			- &	-
start s	angling					<u> </u>	0.50	230-2	U.U		-
Samplin	Comple	8									
. /	1										
											
				***************************************							+1
									-		
				*************		<u> </u>	· · · · · · · · · · · · · · · · · · ·				
	V-15-1 PC-06 7:45 Am ~/4 ~/4 Som; - A Volume Purged Liters Commence 1 2 3 4 5 8 tan + 3	Volume Purged Flow Rate Purged Flow Rate Liters ml/min Correct pro 2 400 3 400 4 400 5 400 \$tart sampling	V-15-08	Pump Intake Depth (in Pic-06) Pic-06) Purging/ Sample Device Purging of Ample Device PID Reading at TOC: Water Level Instrument Will Serial #: Water Quality Meter: Water Quality Meter: Water Quality Meter: WQM Calibrated Date Water Level (feet TOC) Liters ml/min ±0.1 ft 3% Consequenced purging 11.80 1.22 2 400 11.80 1.22 3 400 11.8 1.27 4 400 11.8 1.29 5 400 11.8 1.32	Y-15-08	Y-15-08	Y-15-08	Y-15-08	Y-15-08	Y-15-08	V-15-08

Project: Semi- Annual

Well ID: PC-031 Date: 4~/5-08 Sample ID PC-031 Time: 8:50 Dup ID: Rinsate ID: MS/MSD ID: -	PID Reading at TOC: Water Level Instrument: WLI Serial #: Water Quality Meter:	15.49.5 40 Portable bladder X/A Keck S62 Hoviba U-22	Well Diameter (in): Static Water Level (ft): Total Well depth (ft): Water Column Length: Minimum Purge Volume: Samplers Name: Optimal Pump Setting:	Z' /0.87 46.78 35.98 Do Ak.	
inalysis: Sent-Annual Svite V	· · · · · · · · · · · · · · · · · · ·	T007046	PSI CPM_ Low-Flow or Net Purge:	4 ID: 101	

Time	Volume Purged	Flow Rate	Water Level (feet TOC)	Specific Conductance	pН	Temp.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Salinity	40 610 TDS
0.2	Liters	ml/min	±0.1 ft	3%	± 0.1	± 0.2	± 10%	± 10%	± 10%	%	g/L
9:14	Conne	· · · · · · · · · · · · · · · · · · ·									5/ L
9:12	ったし	25046	10.85	0.859	7.12	2).3	3.28	136	579.0	0.6	6
9:20 9:23	16	360 AL		0-865	7-09	27.4	7.34	106	333.0	9.6	6
9:26	3.54	360 ml		0-868	6.93	27.5	1.97	96_	163.0	0.6	Ď
9:29	4.56	360ml		0.864	6-85	27-5	1-99	85	96.7	0-6	6
9:32	5.52	76026		0.863	6.86	27-5	1.67	81	86.0	O.6	5.4
9:40		36046 Sampling	1085	0.862	6.91	27-5	1.57	74	70-1	ط٠٥	s.ý
9:46	Soungling										
						ļ	ļl				

Comments	